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We consider the problem of optimizing signal transmission through multichannel noisy devices. We inves-
tigate an array of bithreshold noisy devices which is connected in parallel and convergent on a summing center.
Utilizing the concept of noise-induced linearization we derive an analytical approximation of the normalized
power norm and clarify the relation between the optimum threshold and the standard deviation of noises. We
show that the optimum threshold value is 0.63 times the standard deviation of the noises. This relation is
applicable to both subthreshold and suprathreshold inputs.
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I. INTRODUCTION

Stochastic resonance(SR) has attracted considerable at-
tention of many researchers during the last quarter century
[1–7]. At first SR was proposed to explain the observed pe-
riodicities in global climate dynamics[1]. SR occurs when
the signal-to-noise ratio(SNR) for the response of a single
nonlinear system to a subthreshold sinusoidal input signal
has its maximum at a nonzero noise strengthD. As is well
known, the SR effect is understood as an enhancement of the
system input to a subthreshold input signal by the addition of
noise.

There are many studies on SR for a single element. For
example, Gammaitoniet al. showed with SNR that a sub-
threshold sinusoidal signal to a single threshold element
is optimally transduced by appropriate additive noise[8].
Collins et al.also reported that a single neuron can optimally
transmit a slowly varying subthreshold aperiodic signal with
the aid of appropriate additive noise[9]. They proposed the
power normC0 and the normalized power normC1 in order
to measure a correlation between the input signal and the
output signal, and showed that bothC0 andC1 nonmonotoni-
cally vary with increasing the noise strength. It is known as
aperiodic stochastic resonance(ASR).

Many researchers have both experimentally and numeri-
cally studied the symmetrical stochastic resonator, such as
the Schmitt trigger[10–13]. In recent years, the central at-
tention of SR seems to move to a network of the stochastic
resonators, instead of a single stochastic resonator, such as
the global coupled networks and linear chains[14,15]. In
more recent years a parallel array of nonlinear elements gath-
ers a lot of attention, where the parallel array means that the
nonlinear elements are connected in parallel and convergent
on a summing center[6,16,17].

Recently, Stocks studied the parallel array of the nonlinear
devices and reported that the suprathreshold stochastic reso-
nance(SSR) can be observed on this array motivated by
applications to signal processing[6]. Also, from the stand-

point of neurophysiology, Collinset al. and Chialvoet al.
studied that a parallel array of noisy neurons can exhibit
ASR for slowly varying signals[16,17]. Consequently, it is
important to consider the parallel array in both signal pro-
cessing and neurophysiology.

The main focus of the article is to find an optimal thresh-
old to transmit an arbitrary signal on the parallel array of the
bithreshold elements. According to the assumption that the
amplitude of the input signal is smaller than the standard
deviation of the noises, we derive an analytical approxima-
tion of the normalized power norm. Under this assumption it
is not necessary to distinguish between subthreshold and su-
prathreshold. Furthermore, we apply the linear response
theory to the system that we consider in the article. The
fundamental idea is the noise-induced linearization, which is
an effect that an ensemble average of output from a nonlinear
system is linearized due to noise[19]. From the theoretical
approximation of the normalized power norm we show that
there exists the optimal threshold to maximize it.

In fact, Stocks and Mannella numerically showed that for
a summing network of FitzHugh-Nagumo equations, adjust-
ing the threshold to maximize information transmission does
not remove SR effects. They pointed out that there is an
optimal threshold to maximize the mutual information[18].
Our result is consistent with their indication.

The article is organized as follows. In Sec. II we show the
array of bithreshold units. It is well known that Schmitt trig-
ger is a prototype of bithreshold devices[10]. In Sec. III we
theoretically derive an approximation of the normalized
power norm under the assumption that the norm of the input
signal is smaller than the additive noise. Utilizing the ap-
proximation we find an optimal threshold where the normal-
ized power norm is maximized. In Sec. IV we perform nu-
merical simulations for the model and show that the
threshold value at the maximum normalized power norm de-
pends on the variance of the additive noises. Sec. V is de-
voted to concluding remarks.
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II. MODEL

Figure 1 displays noisy bithreshold elements connected in
parallel and convergent on a summing center.sstjd, which is
sampled with a sampling periodT, namely, tj = jT s j
=0,1,2, . . .d, represents a weak aperiodic signal fluctuating
around 0 withxistjd andyistjd denoting the input to and out-
put from the ith subsystem, respectively. The input to the
bithreshold element is transmitted over noisy channel.
Hence, the input to the subsystem is expressed as

xistjd = sstjd + jistjd, s1d

where jistjd s j =0,1,2, . . .d is independently sampled from
the Gaussian distribution,

pisjd =
1

Î2pDi

expS−
j2

2Di
D , s2d

whereDi .0 are the variance ofjistjd. Each bithreshold ele-
ment is symmetric and has three output values. It is formal-
ized by

yistjd = 51 sxistjd . Lid
0 s− Li ø xistjd ø Lid
− 1 sxistjd , − Lid,

s3d

whereLi .0 are threshold values.
The system output through the summing centerYNstjd is

defined as

YNstjd =
1

N
o
i=1

N

yistjd, s4d

whereN is the number of the subsystems. Without noises,
each inputxistjd cannot cross the threshold value, leading to

the system outputYNstjd=0. With noises having an appropri-
ate variance,xistjd can cross the threshold value.

III. THEORETICAL ANALYSIS

We consider theith bithreshold subsystem. LetP+stjd,
P−stjd, andP0stjd be probabilities thatyistjd takes 1, −1, and
0, respectively. For an arbitrary input signalsstjd these prob-
abilities are given by

P+stjd =
1

2
erfcSLi − sstjd

Î2Di
D , s5d

P−stjd =
1

2
erfcSLi + sstjd

Î2Di
D , s6d

P0stjd = 1 − P+stjd − P−stjd, s7d

where erfcsxd is the complementary error function, defined as

erfcsxd =
2

Îp
E

x

`

e−u2
du. s8d

For simplicity we setLi =L and Di =D for all the sub-
systems. From Eqs.(5)–(7) we introduce l=L /ÎD and
zstjd=sstjd /ÎD. The input signal is subthreshold when
zstjd,l and suprathreshold whenzstjd.l.

From Eqs.(4)–(7) the ensemble average ofYNstjd is cal-
culated as

kYNstjdl =
1

2FerfcSl − zstjd
Î2

D − erfcSl + zstjd
Î2

DG . s9d

The Taylor expansion of Eq.(9) aroundzstjd=0 yields

kYNstjdl < Gsldzstjd + Oszstjd3d, s10d

where Gsld represents the first-order coefficient, which is
given by

Gsld =
]

] z
kYNstjdluzst jd=0 =Î 2

p
e−l2/2. s11d

Thus Eq.(10) shows thatkYNstjdl is a linear function of the
input signalzstjd for kuzul!1, wherekuzul is the norm of the
input signal, measured by the average of the amplitude of the
signal. We callGsld in Eq. (10) “gain.”

Now, in order to measure the correlation between the in-
put signalsstjd and the output signalYNstjd we introduce the
normalized power norm[9],

C1 =
C0

fsstjd2g1/2f„YNstjd − YNstjd…2g1/2

, s12d

whereC0 is defined as

C0 = sstjdYNstjd, s13d

with the overbar denoting an average over time,

FIG. 1. The array of bithreshold elements with a summing cen-
ter. sstjd exhibits the input of the system. Each subsystem is a
bithreshold element, which has three output values.xistjd, yistjd, and
Li represent the input, the output, and the threshold value in theith
subsystem, respectively. All the output-of subsystems are summed
by the summing center and divided byN. YNstjd shows the system
output.
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sstjdYNstjd = lim
M→`

1

M o
j=1

M

sstjdYNstjd. s14d

Maximizing C1 corresponds to maximizing the coherence
betweensstjd andYNstjd, namely, it is equivalent to maximiz-
ing information transmission through the devices in Fig. 1.

At first, we discuss the numerator of Eq.(12). For largeN,
YNstjd asymptotically tends tokYNstjdl according to the law
of large number. From Eq.(10) the power normC0 is calcu-
lated as

C0 <
Gsld
ÎD

isi2, s15d

where isi is defined asÎsstjd2, namely, the power norm is
proportional to the gainGsld for a given input signal.

Next we consider the denominator of Eq.(12). For the
purpose we introducehstjd;kYNstjdl−YNstjd we have
khstjdl=0 and

D j ; kh2stjdl = kfYNstjd − kYNstjdlg2l=kYN
2stjdl − kYNstjdl2

=
1

N
hP+stjd + P−stjd − fP+stjd − P−stjdg2j. s16d

YNstjd is distributed around the ensemble averagekYNstjdl,
and ÎD j is of order ofN−1/2. Substituting Eqs.(5)–(7) into
Eq. (16) yields

D jsN,ld=
1

NH1

2FerfcSl − zstjd
Î2

D + erfcSl + zstjd
Î2

DG
−

1

4FerfcSl − zstjd
Î2

D − erfcSl + zstjd
Î2

DG2J .

s17d

Expanding the varianceD j aroundzstjd=0 we have

D jsN,ld=
1

NFerfcS l

Î2
D −

1

p
exps− l2dzstjd2G + O„zstjd4

….

s18d

The first term of Eq.(18) results from a fluctuation of the
output signalYNstjd without the input signal.

Now we considerfYNstjd−YNstjdg2, calculated as follows

[17]. We have fYNstjd−YNstjdg2=YNstjd2YNstjd2. Since we

consider a zero-mean input signalYNstjd=0. From YNstjd
=kYNstjdl+hstjd we have

YNstjd2 = kYNstjdl2 + 2kYNstjdlhstjd + hstjd2=kYNstjdl2 + D j ,

s19d

where we usekYNstjdlhstjd=0, which is proven by employing
an ergodic assumption. Hence from Eqs.(13) and(19), C1 is
expressed by

C1 =
Gsldisi2

isiÎDfkYNstjdl2 + D jg
=

1

Î1 +
D j

kYNstjdl2

=
1

Î1 + c1
−1

,

s20d

wherec1 denotes the ratio betweenkYNstjdl2 and the variance
D j,

c1 =
kYNstjdl2

D j

. s21d

This statistical measure, which is dimensionless and inde-
pendent of scale, is the squared reciprocal of the coefficient
of variation. Highc1 indicates low variability of the output
signal. If kYNstjdl is approximated by the first term of Eq.
(10), andD j the first term of Eq.(18), we obtain

c1 =
2N

p

exps− l2d

erfcS l

Î2
D izi2, s22d

whereizi=isi /ÎD. From Eq.(20) it is clear thatC1 is maxi-
mized whenc1 is maximized. Moreover, from Eq.(22) it is
easily confirmed thatc1 is maximized atl<0.63, so that
0.63 is the optimal threshold.

In order to infer the input signalsstjd from the output
signalYNstjd it is necessary thatkYNstjdl is sufficiently larger
than the fluctuation ofYNstjd. If we impose the condition
c1.1, i.e.,C1.1/Î2 we have

FIG. 2. The normalized power normC1, drawn as a function of
the threshold valuel at N=100 and a fixed amplitude of the input
signal. We performed numerical simulations using the input signal
given by sstjd=0.5A sins2pftjd+A coss4pftjd+0.25A sins8pftjd at
f =1.0 andT=0.001. Then we haveisi /D=izi=Î 21

32A/ÎD. We cal-
culateC1 for variousl at izi=1, 0.1 and 0.01. A solid curve rep-
resents the theoretical relation, Eq.(20) at izi=1, a dashed curve at
D=0.1, a dotted curve at 0.1, and a dashed curve at 0.01. Filled
squares are results of the numerical simulations atizi=1, unfilled
circles at 0.1, and filled circles at 0.01. It is found that forizi
=0.1 and 0.01, the value ofl maximizingC1 is 0.63.
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izi .Î p

2N
ÎerfcS l

Î2
DexpSl2

2
D . s23d

This inequality assures that we can infer the input signalsstjd
from ÎDYNstjd /Gsld for C1.1Î2.

IV. NUMERICAL SIMULATIONS

Figure 2 displays the normalized power normC1 drawn as
a function ofl at fixedizi from direct numerical simulations
of the array of the bithreshold elements atN=100. The input

signal is given by sstjd=0.5A sins2pftjd+A coss4pftjd
+0.25A sins8pftjd at f =10.0 andT=0.001, whereizi is
given by Î21

32A/ÎD. The points are obtained from the nu-
merical simulations for variousl at izi=1, 0.1 and 0.01,
respectively. The curves represent Eq.(20) at the same pa-
rameters as the numerical simulations. It is found that the
results from the numerical simulations are well fitted by the
theoretical relation foruuz u u=0.1 and 0.01.C1 has it maxi-
mum atl=0.63.

However, forizi=1 it differs from the theoretical equa-
tion. The reason is because the output signalYNstjd is not
well approximated by the linear response of the input signal
sstjd, due to the limit of applying the linear response theory.
This disagreement is originated from difference between the
nonlinear response of the system and the linear response as-
sumed in Sec. III.

We demonstrate the output signalYNstjd for various l
=0.63, 1.5, and 3.0 as shown in Fig. 3. The output signal
YNstjd is similar to the input signalsstjd in the order forl
shown. In this demonstration the input signal is given by a
periodic signal. Naturally, the theoretical equation ofC1 that
we obtained is applicable to any input signal(of course an
aperiodic signal) satisfied withizi,1. Specifically, when the
input signal is satisfied with Eq.(23) the output signal gives
a good approximation of the input signal atl=0.63.

V. CONCLUSION

We have investigated the parallel array of bithreshold el-
ements both theoretically and numerically. We give an ana-
lytical approximation of the normalized power normC1 un-
der the assumption that the norm of the input signalsstjd is
smaller than the standard deviation of the additive noises
without distinguishing between subthreshold input and su-
prathreshold input. We confirmed that the theoretical ap-
proximation of C1 is consistent with the results obtained
from the direct numerical simulations of the array of the
bithreshold elements when the norm of the input signal is
smaller than the standard deviation of the additive noises.
While for the larger norm than the standard deviation, the
difference between the approximation and the numerical re-
sults appears. This disagreement is originated from the non-
linear response of the system. We demonstrated that the out-
put signal gives a good approximation of the input signal at
an appropriate threshold. We clarify that the optimal thresh-
old, where the normalized power norm has a maximum
value, is given by 0.63 times the standard deviation of the
noises.

Our study may be applied to a sophisticated array of am-
plifiers. Moreover, the result shows that a collection of
simple bithreshold sensors can detect a weak signal under an
independently noisy environment.

FIG. 3. Time series of the input signalsstjd, of which the wave
form is the same as Fig. 2(a). We performed the numerical simula-
tion atN=100,D=0.1, andizi=0.1. The output signalYNstjd at (b)
l=0.63 sC1=0.669d, at (c) l=1.5 sC1=0.577d, and (d) at l=3.0
sC1=0.166d.
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