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Signal estimation and threshold optimization using an array of bithreshold elements
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We consider the problem of optimizing signal transmission through multichannel noisy devices. We inves-
tigate an array of bithreshold noisy devices which is connected in parallel and convergent on a summing center.
Utilizing the concept of noise-induced linearization we derive an analytical approximation of the normalized
power norm and clarify the relation between the optimum threshold and the standard deviation of noises. We
show that the optimum threshold value is 0.63 times the standard deviation of the noises. This relation is
applicable to both subthreshold and suprathreshold inputs.
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I. INTRODUCTION point of neurophysiology, Collingt al. and Chialvoet al.

Stochastic resonana@R) has attracted considerable at- studied that a parallel array of noisy neurons can exhibit
tention of many researchers during the last quarter centurfSR for slowly varying signalg16,17. Consequently, it is
[1-7]. At first SR was proposed to explain the observed peimportant to consider the parallel array in both signal pro-
riodicities in global climate dynamicgl]. SR occurs when cessing and neurophysiology.
the signal-to-noise ratiQSNR) for the response of a single The main focus of the article is to find an optimal thresh-
nonlinear system to a subthreshold sinusoidal input signabld to transmit an arbitrary signal on the parallel array of the
has its maximum at a nonzero noise strenDthAs is well  bithreshold elements. According to the assumption that the
known, the SR effect is understood as an enhancement of trmplitude of the input signal is smaller than the standard
system input to a subthreshold input signal by the addition ofleviation of the noises, we derive an analytical approxima-
noise. tion of the normalized power norm. Under this assumption it

There are many studies on SR for a single element. Fois not necessary to distinguish between subthreshold and su-
example, Gammaitonét al. showed with SNR that a sub- prathreshold. Furthermore, we apply the linear response
threshold sinusoidal signal to a single threshold elementheory to the system that we consider in the article. The
is optimally transduced by appropriate additive nojS&  fundamental idea is the noise-induced linearization, which is
Collins et al. also reported that a single neuron can optimallyan effect that an ensemble average of output from a nonlinear
transmit a slowly varying subthreshold aperiodic signal withsystem is linearized due to noi§&9]. From the theoretical
the aid of appropriate additive noi$®]. They proposed the approximation of the normalized power norm we show that
power normC, and the normalized power nor@y in order  there exists the optimal threshold to maximize it.
to measure a correlation between the input signal and the In fact, Stocks and Mannella numerically showed that for
output signal, and showed that bdth andC; nonmonotoni- a summing network of FitzHugh-Nagumo equations, adjust-
cally vary with increasing the noise strength. It is known asing the threshold to maximize information transmission does
aperiodic stochastic resonan¢ASR). not remove SR effects. They pointed out that there is an

Many researchers have both experimentally and numerieptimal threshold to maximize the mutual informatifi8].
cally studied the symmetrical stochastic resonator, such aSur result is consistent with their indication.
the Schmitt triggef10-13. In recent years, the central at-  The article is organized as follows. In Sec. Il we show the
tention of SR seems to move to a network of the stochastiarray of bithreshold units. It is well known that Schmitt trig-
resonators, instead of a single stochastic resonator, such gsr is a prototype of bithreshold devicgd]. In Sec. Il we
the global coupled networks and linear chajig,15. In  theoretically derive an approximation of the normalized
more recent years a parallel array of nonlinear elements gatipower norm under the assumption that the norm of the input
ers a lot of attention, where the parallel array means that theignal is smaller than the additive noise. Utilizing the ap-
nonlinear elements are connected in parallel and convergeptoximation we find an optimal threshold where the normal-
on a summing centdi6,16,17. ized power norm is maximized. In Sec. IV we perform nu-

Recently, Stocks studied the parallel array of the nonlineamerical simulations for the model and show that the
devices and reported that the suprathreshold stochastic restweshold value at the maximum normalized power norm de-
nance(SSR can be observed on this array motivated bypends on the variance of the additive noises. Sec. V is de-
applications to signal processiri§]. Also, from the stand- voted to concluding remarks.
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2‘237 the system outpuy(t;) =0. With noises having an appropri-
N ate variancex;(t;) can cross the threshold value.
Threshold
nput System
@) A I Ill. THEORETICAL ANALYSIS
Igc'i:e) We consider theth bithreshold subsystem. LéR.(t;),
Input, ot gi';?a‘it P_(t;), andPy(t;) be probabilities thay;(t;) takes 1, -1, and
slén) l Threshold Y,¢,) 0, respectively. For an arbitrary input sigrsé;) these prob-
d wlnp“t System —:E@—’ abilities are given by
% A, %
s(t)
Noise : P.(t) = —e rfc| <——L> (5)
Eyt,) V2D,
Threshold ) )
J\Input System P_(t.) = } f LS('[Q 6
& _(t;) = serfc = |, (6)
A, Ay 2, 2 V2D;
FIG. 1. The array of bithreshold elements with a summing cen- Po(t) = 1 - P,(t;) - P_(t)) 7)
j

ter. s(tj) exhibits the input of the system. Each subsystem is a

bithreshold element, which has three output valugs), yi(tj), and  where erf¢x) is the complementary error function, defined as
A; represent the input, the output, and the threshold value iittthe
subsystem, respectively. All the output-of subsystems are summed
by the summing center and divided by Y(t;) shows the system
output.

2 o0
erfox) = — edu. (8)
NI x
For simplicity we setA;=A and D;=D for all the sub-
Il. MODEL systems. From Eqs(5)~«7) we introduce A\=A/\D and
Figure 1 displays noisy bithreshold elements connected |§(t) S(tj)/v’D' The input signal is subthreshold when
g play y rZ(t <\ and suprathreshold whet;) > \.

parallel and convergent on a summing cenggy), which is From Eas.(4 the ensemble average Wk(t) is cal-
sampled with a sampling period, namely, t;=]T (] culated aSqS.( =D S verage i(t)) is

=0,1,2,..), represents a weak aperiodic signal fluctuating
around 0 withx;(t;) andy;(t;) denoting the input to and out- Vo)) = 1 M g( ) A+ g(t g
put from theith subsystem, respectively. The input to the () = 5 | erf - 9
bithreshold element is transmitted over noisy channel.

Hence, the input to the subsystem is expressed as The Taylor expansion of Eq9) aroundg“(tj):o yields
x(t) =s(t)) + &(t)), (1) (Ya(t)) = GNL() +O(L(t)?), (10
where &(t;) (j=0,1,2,..) is independently sampled from \here G(\) represents the first-order coefficient, which is
the Gaussian distribution, given by
pi(é) =~ ! eXP(‘ §—2> 2 9 2
V2D, 2D; G(\) = (9_§<YN(tj)>|{(tj):0 = ;e . (1)

whereD; >0 are the variance f(t;). Each bithreshold ele-

Thus Eq.(10) shows thatY\(t;)) is a linear function of the
ment is symmetric and has three output values. It is formal- a-19 (L)

input signalZ(t;) for (|Z])<1, Where<|§|) is the norm of the

ized by input signal, measured by the average of the amplitude of the
1 (x(t)>A) signal. We callG(\) in Eq. (10) “gain.”
vit) =10 (= A <= x(t) <A 3) Now, in order to measure the correlation between the in-

put signals(t;) and the output signa¥(t;) we introduce the

-1 (%) <-A), normalized power norm9],

whereA; >0 are threshold values.

The system output through the summing centg(t;) is C. = Co (12)
. 1~ — 3
defined as T R
[s(t) 1LY = Y(t))“]
Yn(t)) = %2 Yi(t), (4)  whereC is defined as
i=1
COZ S(tJ)YN(tJ), (13)

whereN is the number of the subsystems. Without noises,
each inputx(t;) cannot cross the threshold value, leading towith the overbar denoting an average over time,
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M

SOV = Im S sV, (14
M- M j=1
Maximizing C, corresponds to maximizing the coherence
betweers(t;) andY\(t;), namely, it is equivalent to maximiz-
ing information transmission through the devices in Fig. 1.

At first, we discuss the numerator of EG2). For largeN,
Yn(t;) asymptotically tends tdY(t;)) according to the law
of large number. From Eq10) the power norntCy is calcu-
lated as

G()\)

H:#I2 (15)

where|| is defined as\'s(t)?, namely, the power norm is
proportional to the gailG(\) for a given input signal.

Next we consider the denominator of Ed.2). For the
purpose we introducen(t) =(Yy(t))—Yn(t) we have
(n(t;))=0 and

= (7)) = (Yn() = (NG T=CYR) = (Ya())?
:N{P+(tj) +P_(t) = [P.(t) -

P_(t)1%}. (16)

YN(t) is distributed around the ensemble avergyg(t))),
and \A is of order of N"2. Substituting Eqs(5)~7) into

Eq. (16) yields
_11 S0
AJ(N,)\)—N{Z{erfC( ) c( )]

) e i

(17)

Expanding the varianca; around{(t))=0 we have

A]-(N,)\):é{erfc(%) - 7—1TeXp(— Az)z(tj)z] +0({()%).
(18)

The first term of Eq(18) results from a fluctuation of the
output signalY(t;) without the input signal.

Now we consider[YN(tj)—YN(tj)]z, calculated as follows

[17]. We have [Yy(t) = Yn(t)T?=Yy(t)2Yn(t)2 Since we
consider a zero-mean input signé|(t;)=0. From Yy(t))
=(Yn(tj) + 5(tj) we have

Ya()? = (Yn(t)* + 20Yn(t) 7(ty) + 7(t)*=(Yn(t))* + Kj,
(19
where we us&Yy(t;)) 7(t;)) =0, which is proven by employing

an ergodic assumption. Hence from E@s3) and(19), C, is
expressed by
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FIG. 2. The normalized power nor@y, drawn as a function of
the threshold valuad at N=100 and a fixed amplitude of the input
signal. We performed numerical simulations using the input signal
given by s(t;) =0.5A sin(27ft;) + A cod4ft;) +0.2%A sin(8#ft;) at
f=1.0 andT=0.001. Then we havks||/D= |\g\| Vz—lA/\D We cal-
culateC, for various\ at||Z|=1, 0.1 and 0.01. A solid curve rep-
resents the theoretical relation, §80) at||{|=1, a dashed curve at
D=0.1, a dotted curve at 0.1, and a dashed curve at 0.01. Filled
squares are results of the numerical simulationZat 1, unfilled
circles at 0.1, and filled circles at 0.01. It is found that fdit
=0.1 and 0.01, the value of maximizingC, is 0.63.

_ CMIs®  _ 1 1
ISIVDL(Yn(t))* + 4] /1 A; \l +cpt
(Yn( (Yn(t))?

(20)

wherec, denotes the ratio betwe«élﬂN(tj)}2 and the variance

A,

_ )

=
Y

(21)

This statistical measure, which is dimensionless and inde-
pendent of scale, is the squared reciprocal of the coefficient
of variation. Highc, indicates low variability of the output
signal. If {Y\(t;)) is approximated by the first term of Eq.
(10), andAj the first term of Eq(18), we obtain

2N exp(- \?)

||§||2
erfc( )
V2

where||Z]|=||s|/+D. From Eq.(20) it is clear thatC, is maxi-

mized whenc; is maximized. Moreover, from Eq22) it is

easily confirmed that; is maximized at\ =0.63, so that
0.63 is the optimal threshold.

In order to infer the input signa(t;) from the output
signal Y\(t)) it is necessary thatyy(t;)) is sufficiently larger
than the fluctuation ofY\(t;). If we impose the condition
c,>1,i.e.,C;>1/\2 we have

C1= (22
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FIG. 3. Time series of the input signslt;), of which the wave
form is the same as Fig(&®. We performed the numerical simula-
tion atN=100,D=0.1, and|{||=0.1. The output signaf\(t) at (b)
A=0.63(C;=0.669, at (c) A=1.5(C;=0.577, and(d) at A\=3.0

2
14>/ = \ /erfc(é)exp(h—) .
2N V2 2

This inequality assures that we can infer the input sig(tal

(C,=0.166.
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from \s“BYN(tJ)/G()\) for C;>1,2.

IV. NUMERICAL SIMULATIONS

Figure 2 displays the normalized power no@ndrawn as
a function of\ at fixed||¢|| from direct numerical simulations
of the array of the bithreshold elementd\st 100. The input

(23)
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signal is given by s(tj)=0.%A sin(2#ft;)) +A cod4nft))
+0.2%A sin(8=ft;) at f=10.0 andT=0.001, where|Z]| is
given by \%A/ \D. The points are obtained from the nu-
merical simulations for varioua at ||{|=1, 0.1 and 0.01,
respectively. The curves represent E20) at the same pa-
rameters as the numerical simulations. It is found that the
results from the numerical simulations are well fitted by the
theoretical relation foi|Z||=0.1 and 0.01C; has it maxi-
mum atA=0.63.

However, for||Z|=1 it differs from the theoretical equa-
tion. The reason is because the output signgl;) is not
well approximated by the linear response of the input signal
s(t;), due to the limit of applying the linear response theory.
This disagreement is originated from difference between the
nonlinear response of the system and the linear response as-
sumed in Sec. lll.

We demonstrate the output signél(t;) for various A
=0.63, 1.5, and 3.0 as shown in Fig. 3. The output signal
Yn(t)) is similar to the input signad(t;) in the order fork
shown. In this demonstration the input signal is given by a
periodic signal. Naturally, the theoretical equationGfthat
we obtained is applicable to any input sigriaf course an
aperiodic signalsatisfied with|{|| < 1. Specifically, when the
input signal is satisfied with Eq23) the output signal gives
a good approximation of the input signal)et0.63.

V. CONCLUSION

We have investigated the parallel array of bithreshold el-
ements both theoretically and numerically. We give an ana-
Iytical approximation of the normalized power no@; un-
der the assumption that the norm of the input sigstg) is
smaller than the standard deviation of the additive noises
without distinguishing between subthreshold input and su-
prathreshold input. We confirmed that the theoretical ap-
proximation of C, is consistent with the results obtained
from the direct numerical simulations of the array of the
bithreshold elements when the norm of the input signal is
smaller than the standard deviation of the additive noises.
While for the larger norm than the standard deviation, the
difference between the approximation and the numerical re-
sults appears. This disagreement is originated from the non-
linear response of the system. We demonstrated that the out-
put signal gives a good approximation of the input signal at
an appropriate threshold. We clarify that the optimal thresh-
old, where the normalized power norm has a maximum
value, is given by 0.63 times the standard deviation of the
noises.

Our study may be applied to a sophisticated array of am-
plifiers. Moreover, the result shows that a collection of
simple bithreshold sensors can detect a weak signal under an
independently noisy environment.
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